
Towards a Universally Editable Portable Document Format
Tamir Has san

Round- Trip PDF Solu tions
Vienna, Aus tria

tamir@roundtrippdf.com

ABSTRACT
PDF is the established format for the exchange of final-form print-
oriented documents on the Web, and for a good reason: it is the only
format that guarantees the preservation of layout across differ-
ent platforms, systems and viewing devices. Its main disadvantage,
however, is that a document, once converted to PDF, is very diffi-
cult to edit. As of today (2018), there is still no universal format
for the exchange of editable formatted text documents on the Web;
users can only exchange the application’s source files, which do not
benefit from the robustness and portability of PDF.

This position paper describes how we can engineer such an
editable format based on some of the principles of PDF. We begin
by analysing the current status quo, and provide a summary of
current approaches for editing existing PDFs, other relevant doc-
ument formats, and ways to embed the document’s structure into
the PDF itself. We then ask ourselves what it really means for a for-
matted document to be editable, and discuss the related problem of
enabling WYSIWYG direct manipulation even in cases where lay-
out is usually computed or optimized using offline or batch meth-
ods (as is common with long-form documents).

After defining our goals, we propose a framework for creating
such editable portable documents and present a prototype tool that
demonstrates our initial steps and serves as a proof of concept. We
conclude by providing a roadmap for future work.

CCS CON CEPTS
• Applied computing → Document preparation; • Human-
centered computing → Interaction techniques;

KEYWORDS
Document formats, PDF, layout optimization, interactive editing

ACM Reference Format:
Tamir Hassan. 2018. Towards a Universally Editable Portable Document
Format. In DocEng ’18: ACM Symposium on Document Engineering 2018,
August 28–31, 2018, Halifax, NS, Canada. ACM, New York, NY, USA, 4
pages. https://doi.org/10.1145/3209280.3229083

1 INTRO DUC TION
PDFs are unique in their ability to preserve the visual presenta-
tion of a document across different platforms, systems and view-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DocEng ’18, August 28–31, 2018, Halifax, NS, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-5769-2/18/08…$15.00
https://doi.org/10.1145/3209280.3229083

ing devices. This is thanks to PDF’s roots in PostScript, a printer
language on which it is based. The widespread availability of print
functions in software at the time (PDF was introduced in 1993)
meant that PDF was the “lowest common denominator” among
documents from different sources; any document that could also be
printed could be effortlessly converted to PDF.

However, this is also PDF’s main drawback, and this remains
true to this day: the resulting document is essentially a vector
graphic, and is difficult to edit, at least in such a meaningful way
that would have been possible by the authoring application, such as
a word processor. Users wishing to exchange editable documents
are therefore still forced to use their native application’s format,
and do not benefit from the robustness, openness and portability
that people have now come to expect from a modern document
format.

This paper proposes a framework to tackle this problem, work-
ing towards a open, universal format that can be edited by a vari-
ety of applications conforming to a commonly agreed specification.
The following subsection begins by introducing the current state
of the art: previous approaches to editing PDFs, relevant develop-
ments in the PDF format, and discusses the challenges of a univer-
sally editable format with reference to current editable document
formats. We conclude the introduction by defining the problem
more precisely, stating the goals that this new format should attain.

Section 2 presents the proposed framework and the underly-
ing technologies. Section 3 presents our initial experiments using a
publishing tool developed as a proof-of-concept and Section 4 dis-
cusses further issues that need to be addressed. Finally, Section 5
provides a roadmap for the future directions of this work.

1.1 Editabil i ty of cur rent PDFs
A born-digital PDF that has been generated directly from the source
application, such as a word processor or DTP package, is essentially
a vector graphic, lacking (sufficient) logical structure information
about its content. A number of products exist in the marketplace for
editing such PDF files, but they are usually limited to simple “touch
up” operations, such as adding or removing words and graphic
objects; some more advanced products, such as FoxIt PhantomPDF,
also support limited reflowing of the text by attempting to detect
its structure, but this does not always work predictably.

Currently, editing a previously generated PDF is generally seen
as a last resort, and is only performed if the source file or applica-
tion is unavailable. In contrast, when opening the source file in its
native application, such as a word processor, the application’s inter-
nal model stores the content in a more structured way, enabling
text to reflow when editing, so that the layout automatically adjusts
and items to move to the next page if necessary. This structure is
(mostly) lost when the document is converted to PDF.

If the document’s logical structure is known in sufficient detail,
this internal model can be rebuilt, enabling the document to be edit-
ed in a similar way. However, each application has its own internal

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Tamir Hassan

model, designed specifically for the way that it works; the way the
users interact with it and the types of document that it generates.
There are many features that are common across a wide range of
mostly-text documents from different sources, such as bulleted and
numbered lists, tables etc., and one of the main challenges in design-
ing a universal format is to determine which core features will be
present in the generic document model.

1.2 Oth er notable devel op ments in PDF
Since its initial release in 1993, there have been several develop-
ments to PDF to make it more intelligent and versatile, but these
have all stopped short of the goal of making the files editable.
Tagged PDF was introduced in version 1.6 of the specification
(2004), where extra metadata tags can be added to the content
stream to denote the logical structure of the text. These tags make it
possible to perform a basic reflow for small screen devices, remove
linebreaks when text is copied out of the PDF and are a core com-
ponent of accessible PDFs for users of assistive technology such
as screenreaders. In 2017, the responsive PDF project was pub-
licly announced, which will extend the tagging concept to make it
possible to automatically derive a full HTML representation of the
content, which can be presented in a responsive way using web
technologies.

PDF has always been a container format, allowing embedding of
data in other formats, which are normally ignored by most view-
ing applications. Probably the best examples of such hybrid PDFs
are those created by Open- and LibreOffice, which simply include
the document’s ODF source in one of the streams. Unfortunately,
this feature was not very well advertised (and not activated by
default); and without a suitable file extension such as, for example,
.odf.pdf, nobody would be aware that they were actually view-
ing an editable, hybrid document. Technically, the hybrid ODF/PDF
document is equivalent to having two separate files, as the PDF rep-
resentation is still totally independent from the ODF source. Thus,
if the file is opened for editing on another system, the robustness
guaranteed by PDF is lost.

1.3 Oth er editable for mats
Applications commonly used to author complete documents
include word processors, desktop publishing packages, drawing
programs and even presentation software. They are all largely
based on a page or canvas metaphor, which allows a certain amount
of direct, explicit manipulation of the layout. In fact, the underly-
ing document model in all these programs is very similar; only the
tools that are offered to the user have a different emphasis (which
has led to the current situation where users often have to deal with
several different user interfaces for performing the same task).

Text content, on the other hand, is implicitly laid out: the
content, combined with the typesetting parameters, ultimately
determine its form and how much vertical space it will take up.
Thus, editing the text can lead to more substantial changes in lay-
out if larger objects are placed in sequence to follow the text, or are
somehow anchored to parts of the text instead of to the page.

There are also a number of non-WYSIWYG typesetting systems
for formatting content, where the content’s structure is typically
explicitly defined, and its presentation is implicitly determined by
its structure and other typesetting commands. LaTeX is probably
the best known system in academia, but there are also many for-

matting systems for specific cases that take structured content as
input, usually in XML. But the best example of this approach is
actually the Web itself; the physical presentation of websites is still
dependent on various external factors such as the size of the brows-
er window; basic HTML does not lend itself well to absolute posi-
tioning of objects. And despite continuous development by stan-
dards bodies, browser manufacturers and other stakeholders, it is
still very difficult to guarantee that a document will display identi-
cally across different browsers.

1.4 Prob lem def i n i tion
The previous subsections have summarized the variety of formats
for text-oriented documents and their development over the past
years. It is important that a next-generation format for editable
document exchange supports these new developments, in order to
serve its users well for the foreseeable future. We propose that such
a format should:

• be universal: an open specification enables creation and edit-
ing via a variety of applications, just like PDF does today;

• be portable: the document should be self-contained and be
engineered in such a way that missing data (e.g. fonts) do not
affect layout;

• support editing via a graphical WYSIWYG interface as well
as structured markup;

• enable layout to be defined by both explicit, direct manip-
ulation operations and implicit, batch or optimization
procedures, thus combining the benefits of both approaches
(see Section 2.2);

• store the content in a well-structured form, enabling the
markup to be easily extended by semantic annotation if
required.

It is worth noting that this paper concentrates almost exclusively
on text, as text is the most common type of content across various
document formats, and hence lends itself well to being handled in
a universal way. Other content types are discussed in Section 4.1.

2 KEY TECH NOLO GIES

2.1 Stan dard ized lay out prim i tives
There are two main ways that layouts are described in WYSIWYG
document authoring applications. The first method, used by word
processors, assumes a content frame taking up the whole page
(excluding margins), which is filled in sequence from top to bottom.
With this type of layout, adding or removing content always causes
the layout to be automatically updated based on simple, predictable
rules; if content is inserted, the remaining content moves down. If
the page is full, a new page is created.

In desktop publishing software, text is usually placed into
frames, which are manually defined and can be freely positioned on
the page. In contrast to word processing software, the layout usual-
ly requires manual adjustment after content is added. Such a mod-
el is more flexible and allows arbitrary layouts to be designed, but
needs to be adjusted manually when content is added or removed.

The current proof-of-concept enables the author to choose to
use either of these two models for laying out the page. In fact,
the first model is extended to allow for any number of nested X-Y
divisions. This way, multi-column layouts and even more complex

Towards a Universally Editable Portable Document Format DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

pages (such as this paper) can be created, while still benefiting from
automatic layout adjustment when content is edited.

2.2 Two- step lay out opti miza tion
Non-WYSIWYG publishing systems, such as LaTeX, have remained
popular for long-form content such as scientific articles. This is due
to the system automatically taking care of the layout (at least in
theory), leaving the author to concentrate on writing the content.
At compile time, a number of optimization routines are carried out
to perform pagination, place figures in appropriate places, update
the table of contents and references, etc. In contrast to the WYSI-
WYG approaches described above, due to the global nature of the
layout optimization being used, even carrying out minor edits to the
text can often lead to unexpected, larger changes occurring, such
as a figure jumping to another page.

This makes true WYSIWYG editing very difficult, not only due
to these unexpected changes, but also due to the computation-
al power required to constantly recompute the optimum layout.
Furthermore, the lack of direct manipulation of the objects also
makes it difficult to make any adjustments to the layout after it has
been computed. These disadvantages are often the sources of much
frustration for users of such systems, yet there appears to be sur-
prisingly little research being done to solve this problem.

We propose a two-step layout optimization strategy to make our
framework amenable to long-form documents, allowing them to be
edited in a WYSIWYG fashion. When the content is updated, the
layout is adjusted according to the principles in Section 2.1. Local
optimizations, such as line breaks and balanced columns, are also
carried out, as these are unlikely to distract the author or take too
long to process. Larger optimizations, such as the repositioning of
figures, are performed at a later stage at the author’s convenience.
As soon as the relevant constraints are no longer satisfied (e.g. the
figure is no longer placed on or after its first calling position in the
text), the system should warn the user in an appropriate way (e.g.
by using a red highlight or other visual marking in the case of a
GUI) and advise that a recomputation should be carried out when
the user is ready.

As this recomputation is completely separate from the inter-
active editing process, it could also be carried out by an external
program or web service if, for example, the user has particular
requirements for auto-layouting that are not met by the editor. For
example, [Mit16, Mit17] present significant improvements to the
greedy optimization algorithms for pagination and float placement
that are included in current LaTeX distributions. Alternatively, for
some use cases, it may be preferable to use local optimization fol-
lowed by manual adjustment instead of global optimization.

Given that the underlying source of the document is still text, it
remains just as easy to edit the text (and even the layout) using a
text editor, making this format inherently suitable for collaborative
low-bandwidth, offline-first applications, allowing the use of stan-
dardized versioning systems such as Subversion and Git.

2.3 Robust micro- typog ra phy
Text typesetting is variable by nature, and the precise placement
of characters may vary slightly according to the algorithm that is
being used to set the text. Some of these variations may be uninten-
tional (i.e. due to bugs); for example, kerning pairs in a font might be
ignored or some rounding errors might occur in the calculation of

glyph widths; other more advanced algorithms might purposefully
carry out optimizations to counteract certain optical illusions. Such
minor shifts are not normally noticeable to the untrained eye, but
can accumulate, causing changes in line breaking and other unex-
pected layout changes in the document.

In order to maintain the robustness of PDF, we need to continue
storing the precise positions of each glyph. To facilitate editability,
the original content needs to be stored, together with all relevant
settings, such as the font information, hyphenation, any manual
spacing adjustments, etc. It is then up to each individual applica-
tion to respect these settings and enable the text to be edited in a
conservative way, preserving the line breaks for parts of the text
that are unchanged. In previous work [HH15] we have shown that
there is an inherent flexibility of 5–10% when setting text.

Of course, for an editable document, it is virtually a prereq-
uisite that all fonts are fully embedded (i.e. no subsetting). PDF
includes mechanisms for both partial and “full” embedding of fonts,
although subset fonts are usually used in final-form documents, as
they lead to smaller files and have fewer licensing issues. However,
even fully embedded fonts are usually missing kerning information,
which needs to be embedded separately, in order to ensure high
quality typography when editing the document. A discussion on
the licensing issues of font embedding for editability is presented
in Section 4.2.

3 EXPER I MENTS AND PROOF OF CON CEPT
We have developed an open-source typesetting tool, Pint, to test
this concept, which allows the creation and modification of editable
formatted documents from the command line from XML input. Pint
(“Pint Is Not TeX”) currently supports the following features:

• X-Y and frame-based layouts
• support for multiple columns and column balancing
• Knuth-Plass line-break optimization
• stylesheet-based control of heading and paragraph styles
• addition of figure floats

Pint is written in Java and uses the PDFBox library for PDF
generation. The roadmap for future development includes support
for better float management (including resizing of figures), tables
and citation/reference management.

A document can be authored by creating three XML files: the
marked-up content, the abstract layout description and a stylesheet.
Optionally, additional files, such as fonts and images, may be
included. When Pint is first run on these source files, as well as
generating the PDF, it generates an additional XML physical layout
file, which stores the positions of all the layout frames, enabling
non-destructive editing.

For the purpose of our proof-of-concept, edits to the XML files
are seen as being equivalent to the edits that would be carried
out using a WYSIWYG interface. This includes making changes to
the content, as well as changing the coordinates of objects posi-
tioned using the frame model, etc. (which corresponds to direct
manipulation). After each modification, the pint update command
can be run to carry out all automatic updates that would occur in the
layout structure and local optimizations. If any defined constraints
are not met, for example the content overruns a frame or a figure
float is placed before the page on which it is called out, warnings
are generated and the offending object is marked with a red out-

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Tamir Hassan

Figure 1: After adding text, the figure's placement no longer
satisfies the given constraints, generating a warning mark-
ing (right)

line on the PDF (see Figure 1). In such a case, the command pint
recompute globally optimizes the layout to meet these constraints.

These XML files enable offline, low-bandwidth editing by any
text or XML editor and can easily be integrated into a version-
ing system such as Subversion or Git. For exchanging the docu-
ment with other users, a self-contained hybrid PDF with these files
embedded (e.g. as PDF/A-3) is a much better option, and this feature
is currently planned for the next release of Pint.

The camera-ready version of this paper was formatted with Pint.
The astute reader may notice the lack of typographical nuances
common to other papers in these Proceedings, such as kerning and
ligatures, which have not been implemented yet. The source and
resulting layout files have been embedded in the submitted PDF
using Adobe Acrobat, and it remains to be seen whether they will
survive the transition to the ACM Digital Library.

4 DIS CUS SION
PDF has always been very similar to a vector format, and it has
long been possible to import PDFs into drawing applications such
as Adobe Illustrator to edit them that way. The framework present-
ed in this paper has shown how this editability can be extended
to the text content of a PDF, making the sorts of edit operations
possible that would normally require a word processor, typeset-
ting system, or similar software. Compared to simply distributing
the source files (or hybrid PDFs with embedded source files), our
approach guarantees openness and portability; the layout is always
preserved and the document can be edited in a non-destructive way.
The framework also addresses the disparities between layout edit-
ing via direct manipulation and ex post facto or batch optimization,
enabling the benefits of both approaches to be combined.

4.1 Oth er types of con tent
Print-oriented documents are not limited to simply drawings,
bitmaps and text; they often include other types of generated
content, such as charts and diagrams, which are generated by soft-
ware using completely different internal models. In order to remain
editable, the source information and/or data needs to be embedded
in the file. A system similar to OLE from the 1990s would enable
such content to be edited if appropriate software is available.

It is feasible to extend the logical markup required for editability
to include semantic information about the document. In a related
project, we are working on embedding such information in scien-
tific articles corresponding to the JATS-XML standard. The ability
to embed arbitrary types of content is also likely to be of particular
interest to authors of data-driven documents in certain fields.

4.2 Font licens ing issues
Fonts, or at least their digital implementations, have been tradition-
ally subject to copyright, and their complete inclusion within a PDF
file is equivalent to distributing the font files themselves, enabling
their reuse for completely different purposes outside the scope for
which they were licensed. In order to make it possible to use the
fonts for creating PDFs, most foundries only allow their fonts to be
embedded using subsetting, i.e. including only the characters that
actually occur in the document.

Subset fonts, however, make editing much more difficult as the
font must be substituted with an alternative if unavailable charac-
ters are used. In order to ensure that the replacement characters
fit their original space, PDF provides for the possibility to synthe-
size fonts to match the original font’s metrics (i.e. character widths,
etc.). However, in such cases, metrics are not even available for
characters that have not been used.

In order to ensure proper editability of text whose font has been
(temporarily) substituted, metric information must be embedded
for all characters of the font, and all kerning pairs, etc., even if
they have not been used. It is not clear whether embedding this
information from a commercial font might violate its copyright (as
OpenType fonts are much more like programs in this respect, it
probably would, at least for such fonts), but it is conceivable that
font foundries would be amenable to permitting embedding of their
fonts in such a way, as this information is still insufficient to recre-
ate the font for unlicensed reuse.

Thanks to initiatives such as Google Fonts, there are now a
much larger variety of free fonts available, which are also of suf-
ficient quality and can be used for a wide variety of documents.
Many of the remaining cases are likely to be corporate fonts, and
by embedding their complete metric information, such documents
could be edited by collaborators outside of the organization using
a substitute font, whilst ensuring that the content will fit correctly
when the correct font is reapplied for printing.

5 THE ROAD AHEAD
The introduction of an editable, portable document format has
the potential to improve the way we communicate and share
documents in a wide variety of fields, from scholarly publish-
ing to finance to graphic design, leading to significant increas-
es in efficiency. In order to communicate the ideas and encour-
age further discussion about the topic, a website is now available
at https://editablepdf.org, which contains links to the Pint
software, sample files, and will soon contain all current file for-
mat definitions. It is hoped that this initiative will encourage other
stakeholders and members of the document engineering communi-
ty to participate in shaping the future.

REF ER ENCES
[HH15] Tamir Hassan and Andrew Hunter. Knuth-Plass revisited: Flexible line-

breaking for automatic document layout. In DocEng 2015: Proceedings of the
15th ACM Symposium on Document Engineering, 2015.

[Mit16] Frank Mittelbach. A general framework for globally optimized pagination.
In DocEng 2016: Proceedings of the 16th ACM Symposium on Document
Engineering, 2016.

[Mit17] Frank Mittelbach. Effective floating strategies. In DocEng 2017: Proceedings
of the 17th ACM Symposium on Document Engineering, 2017.

 Towards a Universally Editable Portable Document Format
 DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

 DocEng ’18, August 28–31, 2018, Halifax, NS, Canada
 Tamir Hassan

 Towards a Universally Editable Portable Document Format

 Tamir Hassan
 Round-Trip PDF Solutions
 Vienna, Austria
 tamir@roundtrippdf.com

 ABSTRACT

 PDF is the established format for the exchange of final-form print-oriented
 documents on the Web, and for a good reason: it is the only format
 that guarantees the preservation of layout across different platforms,
 systems and viewing devices. Its main disadvantage, however, is that
 a document, once converted to PDF, is very difficult to edit. As of
 today (2018), there is still no universal format for the exchange
 of editable formatted text documents on the Web; users can only exchange
 the application’s source files, which do not benefit from the robustness
 and portability of PDF.

 This position paper describes how we can engineer such an editable
 format based on some of the principles of PDF. We begin by analysing
 the current status quo, and provide a summary of current approaches
 for editing existing PDFs, other relevant document formats, and ways
 to embed the document’s structure into the PDF itself. We then ask
 ourselves what it really means for a formatted document to be editable,
 and discuss the related problem of enabling WYSIWYG direct manipulation
 even in cases where layout is usually computed or optimized using
 offline or batch methods (as is common with long-form documents).

 After defining our goals, we propose a framework for creating such
 editable portable documents and present a prototype tool that demonstrates
 our initial steps and serves as a proof of concept. We conclude by
 providing a roadmap for future work.

 CCS CONCEPTS

 • Applied computing → Document preparation; • Human-centered computing → Interaction techniques;

 KEYWORDS

 Document formats, PDF, layout optimization, interactive editing

 ACM Reference Format:
 Tamir Hassan. 2018. Towards a Universally Editable Portable Document
 Format. In DocEng ’18: ACM Symposium on Document Engineering 2018,
 August 28–31, 2018, Halifax, NS, Canada. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3209280.3229083

 Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

 DocEng ’18, August 28–31, 2018, Halifax, NS, Canada
 © 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
 ACM 978-1-4503-5769-2/18/08…$15.00
 https://doi.org/10.1145/3209280.3229083

 1 INTRODUCTION

 PDFs are unique in their ability to preserve the visual presentation
 of a document across different platforms, systems and viewing devices.
 This is thanks to PDF’s roots in PostScript, a printer language on
 which it is based. The widespread availability of print functions
 in software at the time (PDF was introduced in 1993) meant that PDF
 was the “lowest common denominator” among documents from different
 sources; any document that could also be printed could be effortlessly
 converted to PDF.

 However, this is also PDF’s main drawback, and this remains true to
 this day: the resulting document is essentially a vector graphic,
 and is difficult to edit, at least in such a meaningful way that would
 have been possible by the authoring application, such as a word processor.
 Users wishing to exchange editable documents are therefore still forced
 to use their native application’s format, and do not benefit from
 the robustness, openness and portability that people have now come
 to expect from a modern document format.

 This paper proposes a framework to tackle this problem, working towards
 a open, universal format that can be edited by a variety of
 applications conforming to a commonly agreed specification. The
 following subsection begins by introducing the current state of the art: previous
 approaches to editing PDFs, relevant developments in the PDF format,
 and discusses the challenges of a universally editable format with
 reference to current editable document formats. We conclude the introduction
 by defining the problem more precisely, stating the goals that this
 new format should attain.

 Section 2 presents the proposed framework
 and the underlying technologies. Section 3 presents
 our initial experiments using a publishing tool developed as a proof-of-concept
 and Section 4 discusses further issues
 that need to be addressed. Finally, Section 5
 provides a roadmap for the future directions of this work.

 1.1 Editability of current PDFs

 A born-digital PDF that has been generated directly from the source
 application, such as a word processor or DTP package, is essentially
 a vector graphic, lacking (sufficient) logical structure information about its
 content. A number of products exist in the marketplace for editing
 such PDF files, but they are usually limited to simple “touch up”
 operations, such as adding or removing words and graphic objects;
 some more advanced products, such as FoxIt PhantomPDF, also support
 limited reflowing of the text by attempting to detect its structure,
 but this does not always work predictably.

 Currently, editing a previously generated PDF is generally seen as
 a last resort, and is only performed if the source file or application
 is unavailable. In contrast, when opening the source file in its native
 application, such as a word processor, the application’s internal
 model stores the content in a more structured way, enabling text to
 reflow when editing, so that the layout automatically adjusts and
 items to move to the next page if necessary. This structure is (mostly) lost
 when the document is converted to PDF.

 If the document’s logical structure is known in sufficient detail,
 this internal model can be rebuilt, enabling the document to be edited
 in a similar way. However, each application has its own internal model,
 designed specifically for the way that it works; the way the users
 interact with it and the types of document that it generates.
 There are many features that are common across a wide range of mostly-text
 documents from different sources, such as bulleted and numbered lists,
 tables etc., and one of the main challenges in designing a universal
 format is to determine which core features will be present in the
 generic document model.

 1.2 Other notable developments in PDF

 Since its initial release in 1993, there have been several developments
 to PDF to make it more intelligent and versatile, but these have all
 stopped short of the goal of making the files editable. Tagged
 PDF was introduced in version 1.6 of the specification (2004), where
 extra metadata tags can be added to the content stream to denote the
 logical structure of the text. These tags make it possible to perform
 a basic reflow for small screen devices, remove linebreaks when text
 is copied out of the PDF and are a core component of accessible PDFs
 for users of assistive technology such as screenreaders. In 2017, the
 responsive PDF project was publicly announced, which will extend the tagging
 concept to make it possible to automatically derive a full HTML representation
 of the content, which can be presented in a responsive way using web
 technologies.

 PDF has always been a container format, allowing embedding of data
 in other formats, which are normally ignored by most viewing applications.
 Probably the best examples of such hybrid PDFs are those created
 by Open- and LibreOffice, which simply include the document’s ODF
 source in one of the streams. Unfortunately, this feature was not
 very well advertised (and not activated by default); and without a
 suitable file extension such as, for example, .odf.pdf, nobody
 would be aware that they were actually viewing an editable, hybrid
 document. Technically, the hybrid ODF/PDF document is equivalent to
 having two separate files, as the PDF representation is still totally
 independent from the ODF source. Thus, if the file is opened for editing
 on another system, the robustness guaranteed by PDF is lost.

 1.3 Other editable formats

 Applications commonly used to author complete documents include word
 processors, desktop publishing packages, drawing programs and even
 presentation software. They are all largely based on a page or canvas
 metaphor, which allows a certain amount of direct, explicit
 manipulation of the layout. In fact, the underlying document model
 in all these programs is very similar; only the tools that are offered
 to the user have a different emphasis (which has led to the current
 situation where users often have to deal with several different user
 interfaces for performing the same task).

 Text content, on the other hand, is implicitly laid out: the
 content, combined with the typesetting parameters, ultimately determine
 its form and how much vertical space it will take up. Thus, editing
 the text can lead to more substantial changes in layout if larger objects are placed
 in sequence to follow the text, or are somehow anchored to parts of
 the text instead of to the page.

 There are also a number of non-WYSIWYG typesetting systems for formatting
 content, where the content’s structure is typically explicitly defined,
 and its presentation is implicitly determined by its structure
 and other typesetting commands. LaTeX is probably the best known
 system in academia, but there are also many formatting systems for
 specific cases that take structured content as input, usually in XML.
 But the best example of this approach is actually the Web itself;
 the physical presentation of websites is still dependent on various
 external factors such as the size of the browser window;
 basic HTML does not lend itself well to absolute positioning of objects.
 And despite continuous development by standards bodies, browser manufacturers
 and other stakeholders, it is still very difficult to guarantee that
 a document will display identically across different browsers.

 1.4 Problem definition

 The previous subsections have summarized the variety of formats for
 text-oriented documents and their development over the past years.
 It is important that a next-generation format for editable document
 exchange supports these new developments, in order to serve its users
 well for the foreseeable future. We propose that such a format should:

 be universal: an open specification enables creation and editing via
 a variety of applications, just like PDF does today;
 be portable: the document should be self-contained and be engineered
 in such a way that missing data (e.g. fonts) do not affect layout;
 support editing via a graphical WYSIWYG interface as well as structured
 markup;
 enable layout to be defined by both explicit, direct manipulation
 operations and implicit, batch or optimization procedures, thus combining
 the benefits of both approaches (see Section 2.2);
 store the content in a well-structured form, enabling the markup to
 be easily extended by semantic annotation if required.

 It is worth noting that this paper concentrates almost exclusively
 on text, as text is the most common type of content across various
 document formats, and hence lends itself well to being handled in
 a universal way. Other content types are discussed in Section 4.1.

 2 KEY TECHNOLOGIES

 2.1 Standardized layout primitives

 There are two main ways that layouts are described in WYSIWYG document
 authoring applications. The first method, used by word processors,
 assumes a content frame taking up the whole page (excluding margins),
 which is filled in sequence from top to bottom. With this type of
 layout, adding or removing content always causes the layout to be
 automatically updated based on simple, predictable rules; if content
 is inserted, the remaining content moves down. If the page is full,
 a new page is created.

 In desktop publishing software, text is usually placed into frames,
 which are manually defined and can be freely positioned on the page.
 In contrast to word processing software, the layout usually requires
 manual adjustment after content is added. Such a model is more flexible
 and allows arbitrary layouts to be designed, but needs to be adjusted
 manually when content is added or removed.

 The current proof-of-concept enables the author to choose to use either
 of these two models for laying out the page. In fact, the first model
 is extended to allow for any number of nested X-Y divisions. This
 way, multi-column layouts and even more complex pages (such as this
 paper) can be created, while still benefiting from automatic layout
 adjustment when content is edited.

 2.2 Two-step layout optimization

 Non-WYSIWYG publishing systems, such as LaTeX, have remained popular
 for long-form content such as scientific articles. This is due to
 the system automatically taking care of the layout (at least in theory),
 leaving the author to concentrate on writing the content. At compile
 time, a number of optimization routines are carried out to perform
 pagination, place figures in appropriate places, update the table
 of contents and references, etc. In contrast to the WYSIWYG approaches
 described above, due to the global nature of the layout optimization
 being used, even carrying out minor edits to the text can often lead
 to unexpected, larger changes occurring, such as a figure jumping
 to another page.

 This makes true WYSIWYG editing very difficult, not only due to these
 unexpected changes, but also due to the computational power required
 to constantly recompute the optimum layout. Furthermore, the lack
 of direct manipulation of the objects also makes it difficult to make
 any adjustments to the layout after it has been computed. These disadvantages
 are often the sources of much frustration for users of such systems,
 yet there appears to be surprisingly little research being done to
 solve this problem.

 We propose a two-step layout optimization strategy to make our framework
 amenable to long-form documents, allowing them to be edited in a WYSIWYG
 fashion. When the content is updated, the layout is adjusted according
 to the principles in Section 2.1.
 Local optimizations, such as line breaks and balanced columns, are
 also carried out, as these are unlikely to distract the author or
 take too long to process. Larger optimizations, such as the repositioning
 of figures, are performed at a later stage at the author’s convenience.
 As soon as the relevant constraints are no longer satisfied (e.g. the
 figure is no longer placed on or after its first calling position
 in the text), the system should warn the user in an appropriate way
 (e.g. by using a red highlight or other visual marking in the case
 of a GUI) and advise that a recomputation should be carried out when
 the user is ready.

 As this recomputation is completely separate from the interactive editing
 process, it could also be carried out by an external program or web
 service if, for example, the user has particular requirements for
 auto-layouting that are not met by the editor. For example, [Mit16, Mit17]
 present significant improvements to the greedy optimization algorithms
 for pagination and float placement that are included in current LaTeX
 distributions. Alternatively, for some use cases, it may be preferable to use local optimization
 followed by manual adjustment instead of global optimization.

 Given that the underlying source of the document is still text, it
 remains just as easy to edit the text (and even the layout) using
 a text editor, making this format inherently suitable for collaborative
 low-bandwidth, offline-first applications, allowing the use of standardized
 versioning systems such as Subversion and Git.

 2.3 Robust micro-typography

 Text typesetting is variable by nature, and the precise placement
 of characters may vary slightly according to the algorithm that is
 being used to set the text. Some of these variations may be unintentional
 (i.e. due to bugs); for example, kerning pairs in a font might be
 ignored or some rounding errors might occur in the calculation of
 glyph widths; other more advanced algorithms might purposefully carry
 out optimizations to counteract certain optical illusions. Such minor
 shifts are not normally noticeable to the untrained eye, but can accumulate,
 causing changes in line breaking and other unexpected layout changes
 in the document.

 In order to maintain the robustness of PDF, we need to continue storing
 the precise positions of each glyph. To facilitate editability, the
 original content needs to be stored, together with all relevant settings,
 such as the font information, hyphenation, any
 manual spacing adjustments, etc. It is then up to each individual
 application to respect these settings and enable the text to be edited
 in a conservative way, preserving the line breaks for parts of the
 text that are unchanged. In previous work [HH15] we have
 shown that there is an inherent flexibility of 5–10% when setting
 text.

 Of course, for an editable document, it is virtually a prerequisite
 that all fonts are fully embedded (i.e. no subsetting). PDF includes
 mechanisms for both partial and “full” embedding of fonts, although
 subset fonts are usually used in final-form documents, as they lead
 to smaller files and have fewer licensing issues. However, even fully
 embedded fonts are usually missing kerning information, which needs
 to be embedded separately, in order to ensure high quality typography
 when editing the document. A discussion on the licensing issues of
 font embedding for editability is presented in Section 4.2.

 3 EXPERIMENTS AND PROOF OF CONCEPT

 We have developed an open-source typesetting tool, Pint, to test this
 concept, which allows the creation and modification of editable formatted
 documents from the command line from XML input. Pint (“Pint
 Is Not TeX”) currently supports the following features:

 X-Y and frame-based layouts
 support for multiple columns and column balancing
 Knuth-Plass line-break optimization
 stylesheet-based control of heading and paragraph styles
 addition of figure floats

 Pint is written in Java and uses the PDFBox library for PDF generation.
 The roadmap for future development includes support for better float
 management (including resizing of figures), tables and citation/reference
 management.

 A document can be authored by creating three XML files: the marked-up
 content, the abstract layout description and a stylesheet. Optionally, additional
 files, such as fonts and images, may be included. When Pint is first
 run on these source files, as well as generating the PDF,
 it generates an additional XML
 physical layout file, which stores the positions of all the layout frames,
 enabling non-destructive editing.

 For the purpose of our proof-of-concept, edits to the XML files are
 seen as being equivalent to the edits that would be carried out using
 a WYSIWYG interface. This includes making changes to the content,
 as well as changing the coordinates of objects positioned using the
 frame model, etc. (which corresponds to direct manipulation). After
 each modification, the pint update command can be run to
 carry out all automatic updates that would occur in the layout structure
 and local optimizations. If any defined constraints are not met, for
 example the content overruns a frame or a figure float is placed before
 the page on which it is called out, warnings are generated and the
 offending object is marked with a red outline on the PDF (see Figure 1).
 In such a case, the command pint recompute globally optimizes
 the layout to meet these constraints.

 These XML files enable offline, low-bandwidth editing by any text or XML
 editor and can easily be integrated into a versioning system such as
 Subversion or Git. For exchanging the document with other users, a
 self-contained hybrid PDF with these files embedded (e.g. as PDF/A-3)
 is a much better option, and this feature is currently planned for
 the next release of Pint.

 The camera-ready version of this paper was formatted with Pint. The astute
 reader may notice the lack of typographical nuances common to
 other papers in these Proceedings, such as kerning
 and ligatures, which have not been implemented yet. The source and resulting
 layout files have been embedded in the submitted PDF using Adobe Acrobat,
 and it remains to be seen whether they will survive the transition to the
 ACM Digital Library.

 Figure 1: After adding text, the figure's placement no longer satisfies the given constraints, generating a warning marking (right)

 4 DISCUSSION

 PDF has always been very similar to a vector format, and it has long
 been possible to import PDFs into drawing applications such as Adobe Illustrator
 to edit them that way. The framework presented in this paper has shown
 how this editability can be extended to the text content of a PDF,
 making the sorts of edit operations possible that would normally require
 a word processor, typesetting system, or similar software. Compared
 to simply distributing the source files (or hybrid PDFs with embedded
 source files), our approach guarantees openness and portability; the
 layout is always preserved and the document can be edited in a non-destructive
 way. The framework also addresses the disparities between layout editing
 via direct manipulation and ex post facto or batch optimization, enabling
 the benefits of both approaches to be combined.

 4.1 Other types of content

 Print-oriented documents are not limited to simply drawings,
 bitmaps and text; they often include other types of generated content,
 such as charts and diagrams, which are generated by software using
 completely different internal models. In order to remain editable,
 the source information and/or data needs to be embedded in the file.
 A system similar to OLE from the 1990s would enable such content to
 be edited if appropriate software is available.

 It is feasible to extend the logical markup required for editability
 to include semantic information about the document. In a related project,
 we are working on embedding such information in scientific articles
 corresponding to the JATS-XML standard. The ability to embed arbitrary
 types of content is also likely to be of particular interest to authors
 of data-driven documents in certain fields.

 4.2 Font licensing issues

 Fonts, or at least their digital implementations, have been traditionally
 subject to copyright, and their complete inclusion within a PDF file
 is equivalent to distributing the font files themselves, enabling
 their reuse for completely different purposes outside the scope for
 which they were licensed. In order to make it possible to use the
 fonts for creating PDFs, most foundries only allow their fonts to
 be embedded using subsetting, i.e. including only the characters
 that actually occur in the document.

 Subset fonts, however, make editing much more difficult as the font
 must be substituted with an alternative if unavailable characters
 are used. In order to ensure that the replacement characters fit their
 original space, PDF provides for the possibility to synthesize fonts
 to match the original font’s metrics (i.e. character widths, etc.).
 However, in such cases, metrics are not even available for characters
 that have not been used.

 In order to ensure proper editability of text whose font has been
 (temporarily) substituted, metric information must be embedded for
 all characters of the font, and all kerning pairs, etc., even if they
 have not been used. It is not clear whether embedding this information
 from a commercial font might violate its copyright (as OpenType fonts
 are much more like programs in this respect, it probably would, at
 least for such fonts), but it is conceivable that font foundries would
 be amenable to permitting embedding of their fonts in such a way,
 as this information is still insufficient to recreate the font for
 unlicensed reuse.

 Thanks to initiatives such as Google Fonts, there are now a much larger
 variety of free fonts available, which are also of sufficient quality
 and can be used for a wide variety of documents. Many of the remaining
 cases are likely to be corporate fonts, and by embedding their complete
 metric information, such documents could be edited by collaborators
 outside of the organization using a substitute font, whilst ensuring
 that the content will fit correctly when the correct font is reapplied for printing.

 5 THE ROAD AHEAD

 The introduction of an editable, portable document format has the
 potential to improve the way we communicate and share documents in
 a wide variety of fields, from scholarly publishing to finance to
 graphic design, leading to significant increases in efficiency. In
 order to communicate the ideas and encourage further discussion about
 the topic, a website is now available at https://editablepdf.org,
 which contains links to the Pint software, sample files, and will soon
 contain all current
 file format definitions. It is hoped that this initiative will encourage
 other stakeholders and members of the document engineering community
 to participate in shaping the future.

 REFERENCES

 [HH15]
 Tamir Hassan and Andrew Hunter. Knuth-Plass revisited: Flexible line-
 breaking for automatic document layout.
 In DocEng 2015: Proceedings of the
 15th ACM Symposium on Document Engineering, 2015.

 [Mit16]
 Frank Mittelbach. A general framework for globally optimized pagination.
 In DocEng 2016: Proceedings of the
 16th ACM Symposium on Document Engineering, 2016.

 [Mit17]
 Frank Mittelbach. Effective floating strategies.
 In DocEng 2017: Proceedings of the
 17th ACM Symposium on Document Engineering, 2017.

 com.tamirhassan.publisher.model.PAPhysTextBlock: Towards a Uni ver sal ly Editable Portable Doc u ment For mat

 com.tamirhassan.publisher.model.PAPhysTextBlock: Tamir Has san
 com.tamirhassan.publisher.model.PAPhysTextBlock: Round- Trip PDF Solu tions
 com.tamirhassan.publisher.model.PAPhysTextBlock: Vienna, Aus tria
 com.tamirhassan.publisher.model.PAPhysTextBlock: tamir@roundtrippdf.com

 com.tamirhassan.publisher.model.PAPhysTextBlock: ABSTRACT

 com.tamirhassan.publisher.model.PAPhysTextBlock: PDF is the established format for the exchange of final-form print- ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: This position paper describes how we can engineer such an ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: After defining our goals, we propose a framework for creating ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: CCS CON CEPTS

 com.tamirhassan.publisher.model.PAPhysTextBlock: • Applied computing → Document preparation; • Human- ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: KEY WORDS

 com.tamirhassan.publisher.model.PAPhysTextBlock: Document formats, PDF, layout optimization, interactive editing

 com.tamirhassan.publisher.model.PAPhysTextBlock: ACM Reference Format:
 com.tamirhassan.publisher.model.PAPhysTextBlock: Tamir Hassan. 2018. Towards a Universally Editable Portable Document ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 1 INTRO DUC TION

 com.tamirhassan.publisher.model.PAPhysTextBlock: PDFs are unique in their ability to preserve the visual presenta- ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: Permission to make digital or hard copies of part or all of this work for personal or ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: DocEng ’18, August 28–31, 2018, Halifax, NS, Canada
 com.tamirhassan.publisher.model.PAPhysTextBlock: © 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
 com.tamirhassan.publisher.model.PAPhysTextBlock: ACM 978-1-4503-5769-2/18/08…$15.00
 com.tamirhassan.publisher.model.PAPhysTextBlock: https://doi.org/10.1145/3209280.3229083

 com.tamirhassan.publisher.model.PAPhysTextBlock: ing devices. This is thanks to PDF’s roots in PostScript, a printer ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: However, this is also PDF’s main drawback, and this remains ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: This paper proposes a framework to tackle this problem, work- ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Section 2 presents the proposed framework and the underly- ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 1.1 Editabil i ty of cur rent PDFs

 com.tamirhassan.publisher.model.PAPhysTextBlock: A born-digital PDF that has been generated directly from the source ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Currently, editing a previously generated PDF is generally seen ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: If the document’s logical structure is known in sufficient detail, ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

 com.tamirhassan.publisher.model.PAPhysTextBlock: Tamir Hassan

 com.tamirhassan.publisher.model.PAPhysTextBlock: model, designed specifically for the way that it works; the way the ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 1.2 Oth er notable devel op ments in PDF

 com.tamirhassan.publisher.model.PAPhysTextBlock: Since its initial release in 1993, there have been several develop- ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: PDF has always been a container format, allowing embedding of ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 1.3 Oth er editable for mats

 com.tamirhassan.publisher.model.PAPhysTextBlock: Applications commonly used to author complete documents ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Text content, on the other hand, is implicitly laid out: the ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: There are also a number of non-WYSIWYG typesetting systems ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: matting systems for specific cases that take structured content as ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 1.4 Prob lem def i n i tion

 com.tamirhassan.publisher.model.PAPhysTextBlock: The previous subsections have summarized the variety of formats ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: It is worth noting that this paper concentrates almost exclusively ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 2 KEY TECH NOLO GIES

 com.tamirhassan.publisher.model.PAPhysTextBlock: 2.1 Stan dard ized lay out prim i tives

 com.tamirhassan.publisher.model.PAPhysTextBlock: There are two main ways that layouts are described in WYSIWYG ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: In desktop publishing software, text is usually placed into ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: The current proof-of-concept enables the author to choose to ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: Towards a Universally Editable Portable Document Format

 com.tamirhassan.publisher.model.PAPhysTextBlock: DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

 com.tamirhassan.publisher.model.PAPhysTextBlock: pages (such as this paper) can be created, while still benefiting from ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 2.2 Two- step lay out opti miza tion

 com.tamirhassan.publisher.model.PAPhysTextBlock: Non-WYSIWYG publishing systems, such as LaTeX, have remained ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: This makes true WYSIWYG editing very difficult, not only due ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: We propose a two-step layout optimization strategy to make our ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: As this recomputation is completely separate from the inter- ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Given that the underlying source of the document is still text, it ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 2.3 Robust micro- typog ra phy

 com.tamirhassan.publisher.model.PAPhysTextBlock: Text typesetting is variable by nature, and the precise placement ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: glyph widths; other more advanced algorithms might purposefully ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: In order to maintain the robustness of PDF, we need to continue ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Of course, for an editable document, it is virtually a prereq- ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 3 EXPER I MENTS AND PROOF OF CON CEPT

 com.tamirhassan.publisher.model.PAPhysTextBlock: We have developed an open-source typesetting tool, Pint, to test ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: Pint is written in Java and uses the PDFBox library for PDF ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: A document can be authored by creating three XML files: the ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: For the purpose of our proof-of-concept, edits to the XML files ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

 com.tamirhassan.publisher.model.PAPhysTextBlock: Tamir Hassan

 com.tamirhassan.publisher.model.PAPhysTextBlock: Figure 1: After adding text, the figure's placement no longer ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: line on the PDF (see Figure 1). In such a case, the command pint ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: These XML files enable offline, low-bandwidth editing by any ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: The camera-ready version of this paper was formatted with Pint. ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 4 DIS CUS SION

 com.tamirhassan.publisher.model.PAPhysTextBlock: PDF has always been very similar to a vector format, and it has ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 4.1 Oth er types of con tent

 com.tamirhassan.publisher.model.PAPhysTextBlock: Print-oriented documents are not limited to simply drawings, ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: It is feasible to extend the logical markup required for editability ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 4.2 Font licens ing issues

 com.tamirhassan.publisher.model.PAPhysTextBlock: Fonts, or at least their digital implementations, have been tradition- ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Subset fonts, however, make editing much more difficult as the ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: In order to ensure proper editability of text whose font has been ...
 com.tamirhassan.publisher.model.PAPhysTextBlock: Thanks to initiatives such as Google Fonts, there are now a ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: 5 THE ROAD AHEAD

 com.tamirhassan.publisher.model.PAPhysTextBlock: The introduction of an editable, portable document format has ...

 com.tamirhassan.publisher.model.PAPhysTextBlock: REF ER ENCES

